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Scattering by a Thick Off-Centered
Circular Iris in Circular Waveguide

Zhongxiang Shen and Robert H. MacPhie

Abstract—A formally exact solution is described for the problems of
scattering at a junction between two circular waveguides with their axes
offset and at a thick off-centered iris in circular waveguide. The analysis
method uses Graf’s addition theorem for cylindrical functions and the
conservation of complex power technique (CCPT). Sample numerical
results are presented and compared with available data in the literature.

I. INTRODUCTION

Waveguide iris coupling has found many applications in microwave
engineering. Circular irises can be used as matching elements in
microwave circuits or in waveguide filters. The problem of a circular
iris in circular waveguide or the related step junction of two circular
waveguides has been considered by many authors. Marcuvitz [1]
gave the equivalent shunt susceptance for the T'E;; mode excitation
of small apertures. English [2] studied the mode conversion at a
symmetric step-discontinuity in circular waveguide. Scharstein and
Adams [3], [4] treated the problems of a T'Fy; mode circular wave-
guide with thin and thick circular irises. Carin et al. [5] investigated
dielectric matched windows in circular waveguide. Most of the
previously published works, however, have been limited to circular
irises concentric with the axis of the circular waveguide. Although a
simple expression of the equivalent shunt susceptance is available in
[1] for the off-centered iris in circular waveguide, the expression is
roughly approximate, and limited to the case of small aperture and
of zero-thickness.

This paper gives a formally exact solution for the problem of a thick
off-centered circular iris in circular waveguide. The conservation of
complex power technique (CCPT), which has been used to obtain
theoretically exact solutions with numerically convergent results to
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the problem of scattering at certain waveguide junctions [6], [7],
and [8], and Graf’s addition theorem for Bessel functions [9] are
employed to obtain an analytical solution for the scattering matrix of
a junction between two circular waveguides with their axes offset.
The generalized scattering matrix technique [10] is then applied to
deduce the scattering parameters of the off-centered iris in circular
waveguide. Numerical results are presented and compared with
those obtained by the approximate formula given in the Waveguide
Handbook [1].

II. FORMULATION

Fig. 1 shows the structure of a circular waveguide of radius as
loaded with an off-centered circular iris of radius a;1. (d, ) are the
polar coordinates of the center of the small circular waveguide in the
coordinate system with its origin at the center of the larger wavegnide
(as illustrated in Fig. 1). Since the CCPT was well documented in
[61, [7]. and [8], only a summary of the formulation will be given
here. The four scattering submatrices of the junction between guides
1 and 2 shown in Fig. 1 have the following form

S = (Y1 + MY M) (Y, - MY, M) (1)
Sor = M(S11 +1) @
S12 =Y 55Y> 3)
Soz = MS.1, -1 @

with Y',. for ¢ = 1 and 2, is the modal admittance matrix for the ith
waveguide [8], the superscript 7’ denotes the transpose operation, and
M is the E-field mode-matching matrix whose (nm, ki)th element
is given by

A{[nm, k1 = / (gZ‘nm M gl,kz)ds (5)
S1

where €, nm (i = 1, 2) being the normalized transverse component
of the nmth mode electric field of guide 7. which has the form as
follows

+  _EX V!, for TE modes ©
Grmm = Ves nm- for TM modes
where
' .
1h _ h Pelpm S1n (nﬂoz)
2Zz,nm“‘]Vrlrn‘]"( , )(COS(n(pz)> (7)
e _ are PeTum \ [ cos (np,)
wz,nm _Nnmjn( , )(sm(ncp,)) (8)
with

Vi = 42 : 9
: % T )® = 72T (o) ®

Ne = Je_ 1
nm T Tnmdnti(Tnm)

being normalization constants, €, = 1 for n = 0, and 2 for n > 0,
and z/,,, and snm arec. respectively, the mth zeros of Jh(x) and
Jn ().

Since the integration in (5) is over the cross section of the small
waveguide S1. we must employ a coordinate transformation between

(10)
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Fig. 1. A thick off-centered circular iris in circular waveguide.
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Fig. 2. Normalized shunting susceptance of an off-centered circular iris of
zero-thickness in circular waveguide.veguide. Line: our results; dots: [1]
(a2 = 11.5625 mm, f = 9.375 GHz. t = 0, 6 = 0°).

(p1, p1) and (p2, p2) 10 eXpress €2, nm in terms of (p1, ©1). In order
to do so, Graf’s addition theorem for Bessel functions [9] is used

It (Gmine) ) = P STas

cos [pp1 — (p — n)d]
T (Ad) (Sin or — (p n)H]) (11

where A is an arbitrary constant. Substituting (11) into (7) and (8)
we obtain the expression of €2, nm in terms of (p1, ¢1) by using (6).
Finally, the elements of the E-field mode-matching matrix M can be
derived according to (5), which are elucidated in the Appendix.

After obtaining the scattering matrix of the junction between
two offset circular waveguides, we can then treat the problem of
an off-centered circular iris of thickness ¢ in circular waveguide.
Fig. | illustrates the structure which can be regarded as a cascaded
connection of two junctions and the generalized scattering matrix
technique [10] may be used to determine the overall scattering matrix
S,

S3s = 8% = 8o + S LS (I — LS1:1LS11) 'LS1x  (12)

v = 8% = Sa1(I — LS11L511) "' LS1s (13)
where L is a diagonal transmission matrix of the iris waveguide with
Lkz, k: — €XP ('.'71 kzt) (14)

as its ki-th diagonal element and the subscript 1 indicates the small
iris waveguide.
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TABLE I B
RELATIVE CONVERGENCE OF THE NORMALIZED SUSCEPTANCE B OF A
JUuNcTION BETWEEN Two CIRCULAR WAVEGUIDES WITH THEIR AXES
OFFSET (d = 2 mm, § = 0°, ag = 11.5626 mm, f = 9.375 GHz)

a1 = ay/2 ay = ay/8 ‘
A A B A A B

TE TM|TE TM TE TM|(TE TM

2 2 4 4 7.782 | 2 2 128 64 | 622.29
2 2 8 6 8154 2 2 192 120 | 631.93
2 2 18 16 8223 2 2 320 200 | 635.19
4 4 8 8 7719 | 4 2 128 64 | 598.87
4 4 18 16 7856 | 4 2 416 128 | 616.87
4 4 32 28 7892 4 2 720 200 | 622.55
9 6 36 24 7766 | 8 4 392 120 | 607.31
9 6 60 40 7812 8 4 792 300 | 612.99
9 6 120 72 17826 8 4 1208 504 | 618.40

III. NUMERICAL RESULTS

In our numerical computations, only the case of air-filled wave-
guides is considered, and the incident mode in the larger circular
waveguide is assumed to be the dominant 7'F7; mode.

We begin with the case of a junction between two circular
waveguides with their axes offset horizontally (8 = 0°). It is assumed
that no propagating modes exists in the smaller waveguide. The
normalized load susceptance of the junction has the form of

=_ 1=Ty
B =
]1+F11

where T';; is the reflection coefficient of the dominant T E;;
mode. Moreover, we assume that the incident 7'Ey; mode in the
larger waveguide is sine-type [see (7)] with ez, 11, ,(p2. w2) =
— (NP /p2)J1(parhy faz) cos pa. As in previous work [8], the
numbers of modes assumed in each waveguide strongly depend
on their relative size. Table I shows the relative convergence of the
normalized susceptance B with respect to Ny and N3, where N
and N, are the numbers of modes retained in the smaller and the
larger circular waveguides, respectively. It is seen that when the
radius a1 of the smaller waveguide is very small compared with aq.
we should take more modes of the larger waveguide into account
to obtain convergent results. It is expected that the shift d between
these two axes of the waveguides also has a noticeable effect on the
convergence behavior.

To compare our results with those obtained by the approximate
formula given in [1], we consider the case of the circular iris with
zero thickness. For this case, the effect of the zero-thickness iris may
be characterized by a shunting susceptance B = B/Y); normalized
with respect to the T'F,; mode’s characteristic admittance Y7;.
Numerical results for the normalized shunting susceptance of a thin
(¢t = 0) off-centered iris in circular waveguide are presented in Fig. 2.
The results are compared with those calculated by the approximate
formula provided by the Waveguide Handbook [1]. We note that the
agreement between the closed-form approximate solution [1] and our
rigorous scattering matrix solution is good for small aperture; but for
the case of large aperture the difference between them is significant
as is expected.

The effect of the location of a small iris on the normalized shunting
susceptance B is shown in Fig. 3. When 8 = 90° or 270°, B reaches
its maximum.

The magnitudes and phases of the reflection coefficient I'y; and
transmission coefficient 71, of the dominant T F1; mode in a circular
waveguide loaded with a thick off-centered iris are plotted in Fig. 4
as functions of thickness ¢t. When the shift d between two axes

15)
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Fig. 3. Normalized shunting susceptance of an off-centered circular irs of
zero-thickness in circular waveguide (a2 = 11.6625 mm. f = 9.375 GHz,
t =0,a = az/8).
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Fig. 4. Magnitudes and phases of the transmission coefficient 17 of a thick
iris in circular waveguide for different d. (a1 = 9.525 mm, ap = 12.74445
mm, f = 9 GHz, ¢ = 0°).

vanishes, the problem considered reduces to that treated by Scharstein
and Adams [4]. For this centered case, it is seen that our results
are in good agreement with those in [4]. It is noted that when the
thickness of the iris increases, the magnitude of reflection coefficient
(transmission coefficient) goes to 1 (0). This is obvious because no
modes can propagate in the iris waveguide and less and less energy
tunnels across the iris as its thickness increases.
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Fig. 5. Magnitude and phase of the transmission coefficient 7 for a thick
iris in circular waveguide (a1 = 6 mm, ag = 10 mm, ¢t = 0.5 mm, § = 0°).

An interesting phenomenon in Fig. 4 is that the transmission
coefficient for an off-centered iris is greater than that of a centered iris.
This property may be attributed to the fact that for the off-centered
case more lower-order modes in the iris waveguide are excited and
less attenuated when they reach the other side of the iris. This curious
phenomenon also occurs for the offset rectangular iris in rectangular
waveguide.

The magnitude and phase of the transmission coefficient 771 are
given in Fig. 5 for different values of shift d. It is seen that when the
working frequency increases, the transmission coefficient becomes
bigger. That is to say, more power can tunnel across the iris when
the frequency increases since the higher-order modes in the smaller
waveguide are less attenuated.

IV. CoONCLUSION

This paper has provided a formally exact modal solution with
convergent numerical results to the problem of a thick off-centered
circular iris in a circular waveguide. The off-centered iris has more
design flexibilities than the centered iris and provides the advantage
of a larger susceptance range. Moreover, circular irises (centered or
offset) are much easier to manufacture than rectangular irises. The
present work may have applications in matched windows in circular
waveguide [5], in constructing filters as a block element, and in the
coupling to a dual mode circular cavity by a circular hole.

APPENDIX

The overall E-field mode-matching matrix M has the following
form

hho he
e ] 16)
nm, ku nm, ki
where
Ti(ah,) T (“2nm
Mg = (L NN @l ( 2) )
Pk o [ Enm
(%) - (%)
a7
M} 1 =0 (18)

M,k = (—1>’“k7rN,21N;ika(w’kl>Jk(C“aﬂ”«)czz (19)
2

3

Trm )2 J;z(l'kz)c]k(a_la'”_fm_)

2 2
Tha — | Tnm
ay ag

MEs, kl=<—1>’““nN£lN:mxkl(

a2

(20)
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with
Tpmd n Tmd
Ql =Jk+n( a2 )C1(k + n) + (—1) Jk_.n< a9 )Oz(k — n)
21
Q2 = ~Joan [ 2N Cy(htm) - (=1 T [ 228 ) 4 (R—n)
az az (22)
Qs = Jein <”’;’;d)cg(k )+ (=1)"Teen (‘”"’"d)c4(k —n)
23
_ [—(ex = Lycos ((k+n)8) sin((k+n)f)]
Cilk+n) = ] (ekk— 1)sin ((k+n)8) cos((k+ n)d) | 24
_ [tex = 1) cos ((k — n)8) —sin ((k — n)6) |
Colk —n) = (E’; — L)sin ((k—n)8) cos((k—n)) | 25
_ [cos((k+n)8) (ex —1)sin ((k+n)8) |
Calk+m) = | o ((k + n)8) (e~ 1)cos (k4 gy | 29
Calk —n) = cos((k—n)8) (ex — 1)sin((k —n)f) @n

—sin ((k —n)d) (ex — 1)cos((k — n)6)

and ¢, = 1 for k¥ = 0, and 2 for ¥ > 0.
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Modellization of Losses in TEq;;-Mode
Waveguide Bandpass Filters

Andrea Melloni and G. Guido Gentili

Abstract—A mode-matching technique for the analysis of TEg1; mode
waveguide cylindrical bandpass filters including losses is presented. The
modes of a lossy radial waveguide are derived and the generalized
scattering matrix of the lossy cavity coupled by two rectangular apertures
is computed enforcing an impedance boundary condition on the cavity
sidewall. Cavity sidewall losses as well as top and bottom wall losses
are therefore taken accurately into account. Numerical and experimental
results are given for a four cavity filter in /i, band.

1. INTRODUCTION

Cylindrical cavities resonating in TEo11-mode are very attractive
for the realization of low-loss narrow-band filters. Fig. 1 shows the
structure of a filter section: cylindrical cavities are coupled together
and to the external waveguide by means of short rectangular coupling
irises operating below cutoff. The two apertures on the cavity sidewall
form an angle 29.

In [1], [2] the authors presented a mode-matching technique to
analyse accurately this kind of filters. That procedure allowed to take
accurately into account the effects of the thick coupling apertures, the
irises angular offset 29, the spurious responses and the higher mode
interaction between adjacent resonators, overcoming the limitations
of available approximate models [3]. [4]. After that, by optimization
procedures it is possible to design filters having the desired frequency
response without resorting to empirical adjustments.

In the present paper, it is explained how to modify this mode
matching technique to take into account also ohmic losses. Top.
bottom, and cavity sidewall are assumed to have finite conductivity
while coupling irises, which are very short and operate below the
cutoff, are assumed lossless. Moreover, since in the passband the
field configuration inside the cavity is very similar to the TEq11 mode
only, losses due to currents flowing 1n the a-direction. which are due
only to spurious modes, are neglected.

For sake of simplicity in this paper the analysis is limited to cavities
with two identical apertures symmetrically placed with respect to the
height of the cavity. The general case of cavities with two different
apertures can be derived with minor modifications of the algorithm.

Sections II and III reports the formal solution of the field problem
and Section IV some numerical and experimental results.

II. STATEMENT OF THE PROBLEM

The analysis of TEo11 bandpass filters is conveniently carried out
by splitting the whole structure in simpler building blocks, as shown
in Fig. 1. Two discontinuities must be analyzed: the symmetrical
double-step formed by the junction between the rectangular external
waveguide and the first (last) rectangular coupling iris and the discon-
tinuity at the junction between the irises and the cavity itself. Each
discontinuity is considered separately and its generalized scattering
matrix is computed. The overall scattering matrix of the total filter
is hence obtained by a suitable direct combination of all single
scattering matrices [5]. The analysis of the double-step discontinuity
in rectangular waveguide is a well known problem, efficiently solved
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